SPTAG (Space Partition Tree And Graph) Visualization π―
δΈζζζ‘£
Algorithm Introduction
SPTAG (Space Partition Tree And Graph) is a high-performance vector similarity search algorithm that combines space partition trees with a navigable small world graph. It was developed by Microsoft and is particularly effective for large-scale, high-dimensional nearest neighbor search problems.
Core Features
- Hybrid Structure
- Space partition trees (KD-trees/BKT)
- Navigable small world graph
- Multiple tree combination
- Search Strategy
- Tree-based coarse search
- Graph-based refinement
- Parallel search paths
- Build Time: O(n log n)
- Query Time: O(log n) average case
- Space Complexity: O(n)
- Scalability: Excellent for high dimensions
Application Scenarios
- Vector Search
- Image retrieval
- Document embedding search
- Feature matching
- Machine Learning
- Recommendation systems
- Pattern recognition
- Clustering
- Information Retrieval
- Semantic search
- Content-based retrieval
- Similar item search
Visualization Features
This demonstration implements:
- Structure Display
- Space partition visualization
- Graph connectivity
- Search path tracking
- Interactive Operations
- Vector insertion
- Nearest neighbor search
- Parameter tuning
- Performance Metrics
- Search time statistics
- Recall rate monitoring
- Memory usage tracking
Code Structure
sptag/
βββ index.html # Main page
βββ sptag.js # SPTAG implementation
βββ style.css # Styling
Usage Instructions
- Data Operations
- Add vectors
- Search nearest neighbors
- Adjust search parameters
- Visualization Control
- View tree structure
- Observe graph connections
- Track search process
Implementation Details
- Node Structure
class SPTAGNode {
constructor(vector, id) {
this.vector = vector;
this.id = id;
this.neighbors = new Set();
this.treeChildren = [null, null];
}
}
- Tree Building
function buildKDTree(points, depth = 0) {
if (points.length === 0) return null;
const axis = depth % dimension;
points.sort((a, b) => a.vector[axis] - b.vector[axis]);
const median = Math.floor(points.length / 2);
const node = points[median];
node.treeChildren[0] = buildKDTree(points.slice(0, median), depth + 1);
node.treeChildren[1] = buildKDTree(points.slice(median + 1), depth + 1);
return node;
}
- Graph Construction
function buildGraph(nodes, k) {
for (const node of nodes) {
const neighbors = findApproximateNN(node, nodes, k);
for (const neighbor of neighbors) {
node.neighbors.add(neighbor);
neighbor.neighbors.add(node);
}
}
}
Optimization Strategies
- Build-time Optimization
- Balanced tree construction
- Efficient neighbor selection
- Parallel processing
- Search Optimization
- Early termination
- Priority queue
- Distance caching
- Memory Management
- Vector quantization
- Compact storage
- Batch processing
Key Parameters
- Tree Parameters
- Leaf size
- Tree number
- Split strategy
- Graph Parameters
- Neighbor count
- Build factor
- Search factor
Advanced Features
- Multi-threading Support
- Parallel tree building
- Concurrent search
- Load balancing
- Quality Control
- Recall rate monitoring
- Precision tracking
- Performance profiling
References